Transport layer

Congestion control and Resource allocation

What is the purpose of transport layer?

Transport layer (Contd..)

- Transport Layer is responsible for delivery of message to the appropriate process
- Data link layer node to node delivery
- Network Layer host to host delivery
- Transport layer process to process delivery

How is the process to process /end to end delivery possible?

Socket address

Socket address is the combinations of IP address and port number

Socket Address

Socket address

Responsibilities of a Transport Layer

- The Process to Process Delivery
- End-to-End Connection between Hosts
- Multiplexing and Demultiplexing
- Congestion Control
- Data integrity and Error correction
- Flow control

Process to Process Delivery

- Transport Layer requires a Port number to correctly deliver the segments of data to the correct process amongst the multiple processes running on a particular host
- A port number is a 16-bit address used to identify any client-server program uniquely

Process to Process Delivery

Process to Process Delivery

End-to-end Connection between Hosts

- The transport layer is also responsible for creating the end-to-end Connection between hosts for which it mainly uses TCP and UDP
- TCP is a secure, connection-orientated protocol that uses a handshake protocol to establish a robust connection between two end hosts.
- TCP ensures the reliable delivery of messages
- UDP is a stateless and unreliable protocol that ensures best-effort delivery

End-to-end Connection between Hosts

Transport layer protocols

UDP

- Connectionless protocol
- Unreliable protocol
- UDP stands for User Datagram Protocol
 TCP
- Connection-oriented protocol
- Reliable protocol
- Provide error and flow control
- TCP stands for Transmission Control Protocol

Multiplexing and De multiplexing

- Multiplexing(many to one) is when data is acquired from several processes from the sender and merged into one packet along with headers and sent as a single packet
- De multiplexing(one to many) is required at the receiver side when the message is distributed into different processes.

Multiplexing and Demultiplexing

Multiplexing / Demultiplexing

Multiplexing and Demultiplexing

Congestion Control

Congestion is a situation in which too many sources over a network attempt to send data and the router buffers start overflowing due to which loss of packets occurs

Data integrity and Error Correction

Transport Layer provides data integrity by:

- Detecting and discarding corrupted packets
- Tracking of lost and discarded packets and retransmitting them
- Recognizing duplicate packets and discarding them.
- Buffering out-of-order packets until the missing packets arrive

Flow control

- The transport layer provides a flow control mechanism between the adjacent layers of the TCP/IP model
- TCP also prevents data loss due to a fast sender and slow receiver by imposing some flow control techniques

Congestion

In network, if the load on the network is greater than the network load capacity, then the congestion may occur

Resource allocation

• How to *effectively* and *fairly* allocate resources among a collection of competing users?

Resource allocation(Contd..)

Resources

• Bandwidth of the links

• Buffers at the routers and switches

Congestion Control and Resource Allocation

- When too many packets are contending for the same link
 - The queue overflows
 - Packets get dropped
 - Network is congested!

Network should provide a congestion control mechanism to deal with such a situation

Congestion control

- Congestion Control refers to the mechanisms and techniques to control the congestion and keep the load below the capacity
- The transport layer recognizes overloaded nodes and reduced flow rates and takes proper steps to overcome this

Congestion Control and Resource Allocation

- Congestion control and resource allocations involve both hosts and network elements such as routers
- In network elements
 - Various queuing disciplines can be used to control the order in which packets get transmitted and which packets get dropped
- At the hosts' end
 - The congestion control mechanism paces how fast sources are allowed to send packets

Thank you